
THE FLORIDA STATE UNIVERSITY

COLLEGE OF ARTS AND SCIENCES

A Non-Invasive Productivity Tracker for Programmers

Author
CONNOR J. CHRISTIAN

Supervising Professor
Dr. Sonia HAIDUC

Committee Member
Dr. Xin YUAN

Committee Member
Dr. Shayok CHAKRABORTY

March 27, 2019



A Non-Invasive Productivity Tracker for Programmers

Connor J. Christian
Department of Computer Science

Florida State University
Tallahassee, Florida 32304
Email: cochrist@cs.fsu.edu

Abstract—Time is a valuable resource that should not be
wasted from being distracted during work hours. As a pro-
grammer, our work is almost entirely done on a computer
and online. Distractions are everywhere from the applications
installed on your machine to the websites you visit in your
browser. When working remotely or freelance, without the
team settings or the restrictions from a company computer,
it is easy to fall down the rabbit hole when research leads to
distracting websites.

This project, Monty, offers a lightweight full-stack solution
that prioritizes simplicity and non-invasive data gathering to
achieve results comparable to many open-source and propri-
etary projects. Currently, the source code requires approxi-
mately 15MB of hard drive space and the SQLite database is
currently 9MB in size containing 22,671 logged minutes and
270 ranked applications and websites. When running idle, the
project utilizes less than 1% CPU time and approximately
50MB of memory. When computing a month’s worth of
data, CPU usage is around 12% and approximately 73MB
of memory. Non-invasiveness is achieved through limited data
gathering and not distributing any logged information.

Current limitations of the project are the use of a Linux
Operating System utilizing Upstart and the Firefox browser.
The project was developed on Ubuntu 16.04 OS using Firefox
Quantum.

Index Terms—Software engineering, non-invasive, lightweight,
full-stack, productivity tracker

1. Introduction

Properly utilizing time working on the computer is vital
for a software developer as the majority of our work is done
online. Avoiding distractions is often harder than it sounds
like. Distractions come in many forms: posts and threads
in discussion boards, notifications, installed applications,
even emails can unknowingly be costing you time. An
obvious approach is to not install any distracting programs,
a blacklist of websites, or work solely on a designated
work machine to keep you from these common distractions.
However, this is not always ideal if you work remotely or
do not have a designated work machine and you need to
use your computer for more than just work. This project,

Monty, aims to be a lightweight and non-invasive solution
that gives you the freedom to use your computer as you like
while keeping you informed on how you are utilizing your
time.

When designing Monty, three things were kept in mind:

• simplicity
• lightweight
• non-invasiveness

Simplicity is showcased in the modular design of the
source code, allowing for future modifications to be easy to
implement; as well as an intuitive web user interface (UI).
The user should be presented with an easy to digest anal-
ysis of the logged data without having to navigate through
many button presses or pages. For being lightweight, only
lightweight tools were used, minimal data is collected to
achieve informative graphs, and multiprocessing was uti-
lized to keep performance fast. Lastly, achieving a non-
invasive solution requires retrieving data on how the user
is utilizing their time without storing the details of the
content. For example, it is important to know that the user
is watching a video but not what they are watching. As
it turns out, each factor influences the others. A simplistic
design leads to less code and a smaller deliverable. Non-
invasive data gathering reduces the amount of storage space
necessary as well as reducing the computation time.

This project aims to develop a productivity tool that’s
target audience are programmers. Many developers are ner-
vous about how their data is being used online, therefore
Monty keeps all data local. By doing so not only is the
collected data safe, but it is also readily available for further
experimentation. For example, the SQLite database can be
queried to have the output feed to machine learning algo-
rithms or fed to other applications. As Monty is targeted
towards programmers, it is developed on and designed for
the Ubuntu 16 operating system and utilizing the Firefox
browser. Future versions will expand on the scope of op-
erating systems and browsers supported as well as increase
functionality.

The rest of this paper is organized as the follows. Section
2 provides information on related work. Section 3 goes in
depth on the approach I took to developing Monty. Section 4
discusses testing. How to use Monty is described in Section
5. Section 6 speaks of overall performance of the project.



Section 7 discusses threats to validity. Section 8 speaks of
my conclusions and Section 9 talks of future work.

2. Related Works

While there exist many productivity tracking software
products, often they are not free, intended for businesses or
teams, and store personal information on remote servers. A
very popular product on the market is ”Saent” [1]. Saent’s
offers a button which acts as a timer for starting and stopping
”sessions”. During these sessions, Saent actively blocks
distractions, such as notifications, banned websites, and
discourages multitasking to promote productivity. Benefits
of this product come in the form of ”smart breaks”, based on
the Pomodoro Technique, and the ability to save data locally
[2]. TimeTracker is another proprietary product targeted
towards teams and developing spreadsheets for reports at
a faster rate [3]. TimeTracker does support a free version
of the software; however, it is limited to only one week’s
worth of data, whereas the paid versions come with more
features and at different price points. Similar to TimeTracker
is an open-source project called Fluxday, designed to also
track the productivity of teams but for start-ups [4]. Fluxday
sports a simpler user interface than other products having an
uncluttered design. On a more personal scope, like Saent,
RescueTime offers analytics about the user’s daily computer
usage with an intuitive design [5]. Unlike Saent, Rescue-
Time does not have the option to store data entirely locally,
but it does boast a free version that can store data up to
a history of three months. Tools that are open-source and
commonly used are Ubuntu’s Zeitgeist and related Activity
Log Manager [6] [7]. Zeitgeist is installed by default in
Ubuntu distributions, running in the background logging
user’s activity to be used by other applications. The data
that Zeitgeist logs are very invasive, logging files opened
and conversations had with people. Although the logged
data is kept internally on the machine, it is meant to be
used by other applications installed. Activity Log Manager
is a separate program that acts as a setting user interface to
Zeitgeist, allowing the user to set restrictions to what can
and cannot be logged.

Monty aims to find a common ground between the
aforementioned works. I propose a non-invasive solution that
only tracks running processes owned by the user and the
base URLs of websites visited, unlike Zeitgeist. The data
collected will only be stored locally in a SQLite database
unlike most of the products mentioned; with exception to
Saent if most users utilize this feature. Monty will be created
as an open-source productivity tracker that offers an intuitive
user interface and informative graphs allowing the user easy
access to the code base for modifications or importing the
data into other works. Monty is meant to showcase how the
user is utilizing their time such that they can fix potential
problem areas to better themselves. Monty will never block
computer functionality from the user, unlike Saent, giving
the user full control over what they do.

3. Method

To develop a lightweight productivity tracker, only a
small data set needs to be actively logged. The most im-
portant pieces of information is what is running and when
it is running. In this case, that information is the name of the
application (or website visited) and the time-stamp at which
the process was detected. This is the very least amount of
data that can be logged that has meaning; however, many
running processes are not directly related to the user, e.g.
system processes and service daemons. By only logging
processes owned by the user, and not those owned by root
or other users, we can eliminate a vast majority of the noise.
After filtering out all the processes not owned by the user,
there are often still a large number of processes owned by
the user but are still OS related or daemon process used
to keep programs alive and running. Examples of these are
check-new-release, compiz, desktop-launch, ibus, etc. While
these are owned by the user, they are not informative as
they are nearly all prompted by the OS and hidden. To
avoid being buried in commonly running system processes,
I propose a ranking system to filter the logged data. There
are five possible ranks enumerated as follows:

Unknown (0)
Newly logged application that has yet to be
classified.

System (1)
Operating system processes/daemons/etc not in-
dicative of what you are running.

Distracting (2)
Applications that do not improve your levels of
productivity.

Neutral (3)
Applications that can equally be used for pro-
ductive work or as a distraction.

Productive (4)
Applications that help you work or you utilize
to be productive.

It should be noted that all detected process are initially
classified as ”Unknown” until manually classified otherwise.
To accommodate the users from having to manually sort
hundreds of processes from initial setup, the repository of
the project contains a pre-classified database intended to be
used. All items found in the database can be reclassified
depending on the user’s interpretation of the effect an ap-
plication has on themselves. For example, I may find that
listening to music as I work encourages my productivity;
however, the user may disagree and finds music distracts
from productivity. If that is the case, the user may simply
reclassify the application under distracting. If there is no
database found or it is removed, the project will create an
empty database and fill it as new processes are discovered
classifying them as ”Unknown”.

Lastly, it is possible for the user to have different levels
of activity when working. In other words, is the user actively
using the computer to work, is the user passively working,



or has the user walked away or locked the computer. This
ultimately leads to three possible working states:

High
High activity is detected meaning that the user
is actively typing or moving the mouse.

Low
Low activity meaning there is no input from
keyboard or mouse and the computer is un-
locked.

Away
The computer’s lock-screen is activated.

To account for websites a simple boolean flag indicating
whether or not the name that was logged corresponds to a
website or an installed program will suffice. With the above-
mentioned ranks, activity levels, and website flag, we can
intelligently log processes encountered by name and time-
stamp detected. When determining the frequency of how
often data should be collected, one minute was selected as it
was a small enough unit to accumulate accuracy over long
periods of time, while simultaneously being large enough
as to not bloat the database with unneeded duplicated logs.
Intuitively, timeframes less than a minute is not long enough
to realistically work on anything and although five-minute
increments were considered, one minute gave more accuracy
as being able to detect when a user has walked away briefly.

3.1. Tools

When developing the software to gather and process data
efficiently the following tools and frameworks were utilized:

• Python3
• Flask
• setproctitle
• SQLite
• Upstart
• top

• Firefox
• lz4json [8]
• Bootstrap
• AngularJS
• ChartJS
• DataTables

Python3 was chosen as the language to write productiv-
ity tracker due to its library ecosystem and ease of porta-
bility. Utilizing python’s standard library features, very little
was needed to be installed via third-party (Flask, Flask-API,
setproctitle). Flask is a lightweight python micro-framework
for web development. SQLite is chosen as the database used
to store the logged data and rankings as it is a lightweight
disk-based database. It is also shipped with the installation
of python itself.

Upstart is Ubuntu’s system and user init script daemon
allowing scripts to be stopped and started via events. Upstart
is utilized for stopping and starting Monty on user login,
logout, and shutdown. Top is utilized for detecting running
system processes in real-time, allowing for quick parsing,
taking advantage of command-line arguments to remove
excess information unneeded for tracking purposes.

Firefox is shipped with all Linux operating systems,
therefore my focus for logging surfing habits started here.

Figure 1. SQLite schema used to relate two tables. Illustrating that Logs
contains a list of application names which are used as keys to entries of
Ranking.

Firefox stores backup data of user sessions in an lz4 com-
pressed JSON object in the user’s home directory. Using
the lz4json tool to decompress and read the session ob-
ject, I have access to the web addresses actively opened
in the browser. Lastly, Bootstrap, AngularJS, ChartJS, and
DataTables are JavaScript and CSS frameworks that allow
for mobile-friendly web development and dynamic graphs
to display datasets, respectively.

3.2. Database

Utilizing a SQLite database for storing the mined in-
formation allows for a light impact on storage space while
maintaining the efficiency of a relational database all without
installation headaches of server management on the user’s
end, as SQLite is file-based. This allows for cross compat-
ibility and easy manipulation of the stored data.

The schema of the database needs to easily relate the
identified information as shown in figure 1. A list of all
detected processes and websites (represented as a comma-
separated string) are stored in the ”Logs” table, identified
by the UNIX time-stamp, at which it was generated, as the
primary key. For each individual name logged, there is also a
rank associated with it, as well as a flag indicating whether
or not the name indicates a website. This information is
stored in the ”Ranking” table where the unique name is the
primary key to an entry storing the associated rank and flag.
The relation between Logs and Ranking is many-to-many as
Logs contains a string of many application names, each of
which is assigned an entry in Rankings; so one log points to
many Rankings. Likewise, one rank is assigned to a unique
application name, which can be found in many logs.

Although this is an intuitively simple database design, it
is all that is necessary to maintain the relationships between
the mined data.

3.3. Back-end

With the database designed, a tool used to acquire the
information and insert into the database is needed. Con-
straints of the program are that it should work behind the
scenes without the need for user input, accumulate data over
one-minute increments, and gracefully save its state when
the user logs off or sends a signal to stop. The structure of
the source code of the back-end is as follows:



main .py
The main driver for the back-end of the produc-
tivity tracker.

src/activity.py
A module created to handle determining levels
of computer activity.

src/firefox.py
A module created to handle retrieving and pars-
ing Firefox session data.

src/log.py
A module created for opening a connection to
the database as well as inserting and updating
entries into.

In main , the first things that are done are to rename
the title of the process to ”Monty”, identify the username of
the computer user, and creating a signal handler class called
”KillHandler”. The reasoning behind renaming the process
is to be able to differentiate processes that are run by the
user and those that are spawned from ”Monty”; since Monty
will be running continuously running in the background as
a process it should not be included in the generated graphs.
Identifying the name of the user is important for filtering out
unwanted processes. This is done by simply accessing the
environment variable $USER. The KillHandler class simply
listens for the SIGINT and SIGTERM, setting a boolean
attribute ”killed” to true, indicating that a signal has been
caught, allowing Monty to gracefully exit. SIGKILL cannot
be handled, so it is not possible to gracefully exit from;
however, this is not an issue as SIGKILL is not a very
common occurrence and the potential loss of data is in units
of minutes. Next, utilizing python’s multiprocessing module
an Event, Queue, and Process class are all instantiated
such that data processing can occur in parallel. Since child
processes inherit the signal handler of the parent, SIGINT
and SIGTERM are temporarily ignored. When defining
Process we assign it a function process loop, which will
be discussed below, and arguments containing an instance
of Event, exit event, and an instance of Queue, work queue.
After the defined Process is started, the signals SIGINT and
SIGTERM are restored, a delay of sixty seconds is defined
and a loop is entered that terminates on detection of a signal.

Within the main loop, three things are accomplished
within a try-except block:

1) Call the top command and retrieve its output.
2) Queue a job containing the current time-stamp and

the previously retrieved output.
3) Check if a signal has been caught.
First, in a try, function call top() is called. The purpose

of this function is to construct the appropriate top command
to retrieve the needed data and return it. Top command-line
arguments used are

-b : Batch-mode
Prints output ideally for piping output to files
or other programs.

-i : Idle-process
Toggles idle-processes, in this case removing
them from output.

-d : Delay-time
Delays top from printing until one minute has
passed; containing one minutes worth of logged
data.

-u : User-filter-mode
Only includes processes owned by the user.

-n : Number-of-iterations
Used to auto-stop top. Monty sets n to 2 so after
top refreshes from the minute delay, top exits.

-w : Output-width-override
Forces top to set width to a specified amount, in
this case 512 columns, which is the maximum
possible by top.

We then strip the returned data from top using grep matching
against all lines that include the username. This gets rid of
any superfluous system data that is often at the beginning of
top’s output. Then the sub-process is renamed as to not be
included in the generated graphs later using ”bash -c” and
”exec -a”. The constructed command is the following:

bash -c "exec -a Monty_Top top -bid\
60 -u <username> -n 2 -w 512"

Where

bash -c
Allows for commands to be passed as an argu-
ment string.

exec -a
Names the process.

Since the function call is within a try block, if an interrupt
were to occur during the execution of top, it will be caught
with:

subprocess.CalledProcessError

Although the exception block itself is empty, we desire
this as Monty should not do anything in this case but skip
directly to clean up. This happens because adding jobs to the
work queue is found in the ”else” block of the try, meaning
job creation only occurs if there was no previous exception.
Therefore, the next code that is reached is the ”finally” block
that is always executed in a try block.

If there are no exceptions caught during the execution of
top, then we put the generated output from top and the time-
stamp of the previous minute onto the work queue. This then
gets removed from the queue and the data is processed in
parallel.

Lastly, there is a ”finally” block that is used for cleanup
purposes. Here an instantiating of the KillHandler class is
checked for any caught signals. If a signal has been caught,
the exit event is set and the process running in parallel finish
up. Next, Monty waits for the process to finish clean up, then
breaks out of the main loop, and closes the connection to
the database that was opened when importing the src/log.py
module

Within the process running in parallel there is a loop that
runs until the exit event is set; forcing the process alive in
times when there is nothing in the work queue. If there is



data in the queue, it is popped off and the arguments are
passed into the parse data() function to be parsed and stored
in the database. After popping off the queue, the loop sleeps
for one second as to not consume 100% CPU power. In the
event of clean up, the initial loop exits (no longer being
forced alive), if there is any remaining data in the queue it
is immediately processed and allowed to gracefully exit.

In parse data(), the output string generated from top is
transformed into a set of unique process names by splitting
the string on the newline character, creating one line per
process, then using regular expressions to isolate the name.
If ”ibus” is one of the names detected then input has been
received via mouse or keyboard indicating that the activity
level should be set to ”High”. Once all lines from top have
been parsed, the activity levels are determined by calling the
check activity() function imported from the activity module.
This is done in case high activity was not detected, then the
computer may have been locked, or the user could have
not been actively using the computer. To acquire recent
web history the query() function, imported from the firefox
module, is called. The output is then added to the set of all
processes. Lastly, insert logs() and insert ranking(), from
the log module are called, inserting the acquired data into
the database.

The activity module works by maintaining a variable
that holds the last registered activity level (High, Low, and
Away) and getter/setter functions for updating said variable.
Every time parse data() calls check activity(), we need to
determine whether or not the screen is locked. This is
because regardless of input being detected, if the screen is
locked then the user is not actively working on the computer;
therefore the activity level is set to ”AWAY”. If the screen is
unlocked, then either there was activity detected, via ”ibus”
found in process logs, or not. If so then the variable is set
to ”HIGH”, otherwise, ”LOW”. It is possible to leave the
computer unlocked yet walk away from the computer, or
simply never lock the computer, in this case, there is no
difference between ”AWAY” vs ”LOW” activity. The levels
are meant to help the user deduce what they were doing in
that time based on their habits as the only important level
is ”HIGH” activity or not.

The firefox module navigates to the ”recovery.jsonlz4”
session backup file located within the user’s hidden
”.mozilla” directory, opens the file using the lz4jsoncat tool
and parses through the resulting JSON object. Within the
JSON object, a set of unique URLs visited in the last
minute is constructed. This is done by checking all windows
that are open and iterating over every tab, checking the
logged time-stamp under the ”lastAccessed” attribute. For
each valid URL found, only the base URL is stored. In
other words, sub-directories and ports are not logged as this
is potentially sensitive information. To ensure we maintain
our non-invasive stance for productivity tracking, the URLs
are trimmed.

Lastly, the log module opens a connection to the SQLite
database if it is found, if not it creates the database and
any missing tables according to the schema described in
Figure 1. It also provides three helper functions to be used

in parse data():

insert logs()
Inserts into the Logs table a new entry con-
taining the current time-stamp (accounting for
local timezone), the set of all detected pro-
cesses/websites (as comma-separated string),
and the current activity level.

insert ranking()
Inserts into the Ranking table a newly detected
process/website, assigning it the default rank 0
for ”Unknown”, and set the website flag.

close connection()
Closes connection initially opened.

These components form the back-end of the application
that collects data on the user’s computer usage in minute in-
crements. All data is stored in the SQLite database described
in the previous section. Utilizing command-line tools and
multiprocessing allows for efficient data processing that is
not resource intensive.

Monty contains a second independent application that
runs the web UI. The files responsible for hosting the UI
are:

init .py
The main driver for the Flask web UI that
dynamically servers the html files.

db.py
A module that handles opening and closing the
database for Flask when the UI is activated and
closed.

In init , located in the ”web” sub directory, is the
code responsible for configuring a Flask web page as well
as the functions used to deliver content to create dynamic
web pages. The aspects within this file that is personally
related to Monty, and not common to all Flask applications,
are the functions defined nested within the create app()
function. Most notably are the day(), week(), and month()
functions which prepare data over a days/weeks/months time
frame to be displayed in graphs, and the crud() and export()
functions which both showcase the contents of the database.
It should be noted that crud() does so in the form of an
interactive table for reclassifying and removing entries in
the Ranking table, whereas the export() function returns
contents of the database as a JSON object. The getRanks()
and updateRanks() are helper functions for crud() of which
the former retrieves the contents of the Ranking table to
display in the UI, and the latter updates the Ranking table
according to input from the UI. The remaining functions,
dayStats(), getData(), classifyData(), and colorWeek() are
refactored functions of shared functionality between the
day/week/month methods.

The statistics needed for graphs produced by day()
are retrieved from getData() which returns the following
datasets over the time-frame of an hour: a list of all
programs detected, a list of all programs detected during
high/low/away activity, the number of minutes logged during
high/low/away activity. An hourly breakdown where each



hour is labeled as having high/low/away activity levels,
based on which appears the majority of the time, is also
returned. This is used to quickly signify, as a whole, which
hours was the user actively at the computer or not. The
classifyData() further organizes the previously acquired data
into tuples containing the data’s name, rank, and frequency
of appearance during the hour, and if they appeared during
high/low/away activity time. These tuples are grouped by
names that belong to program, websites, or those of which
that have an ”Unknown” rank. This allows for a quick break
down of how a day has been spent, as well as an in-depth
breakdown for a particular hour containing graphs and a log
of programs and websites accessed.

To construct the data for a week’s view, dayStats()
was utilized to collect the hourly activity and productivity
levels (number of hours productive/distracted/neutral hours)
as well as the sum of each logged program and website’s
frequency. By running this function for each day a given
week, a daily breakdown is constructed in units of hours.
The running total of frequencies is used to construct the
top five programs and websites used for the given week.
The colorWeek() returns the daily activity level depending
on which level appears the most often over the course of
the day, which in turn is used to assign the day a color
representation.

The month’s data representation is comprised of the data
returned from dayStats(), however, instead of iterating over a
given week, it is down over a given month. For this dataset,
the number of productive hours vs distracted is desired. This
gives an intuitive breakdown over a month’s worth of data,
without overwhelming the user.

3.4. Front-end

The goal of the front end is to deliver informative graphs
representing the data that has been collected in an intuitive
manner. The constraints were to have a simple design that
allowed the user to access the tracked data in as few clicks as
possible while still easily accessing all of the data available,
all while not sending any collected data remotely. Flask
serves the dynamic webpages on localhost via port 5000
(localhost:5000), this ensures that only you can view your
data on your machine. With that in mind, the features of
the website would contain only a few buttons to navigate
the site, those are the ”Day”, ”Week”, ”Month”, ”Update”,
and ”Export” buttons which redirect to the appropriate URL.
There is also a day picker which allows for quick navigation
to a particular day.

The export page is intended to function as an API call
to the database, returning a JSON object of the contents of
the database. This data could be used as a simple means of
input to avoid using SQL calls if a user wanted to do so. The
update page, as shown in Figure 2, similarly gives access
to the contents of the database in the form of a dynamic
table. This allows the user to easily view paginated entries
into the database with the options to reclassify or delete
specific entries. Since all graphs are generated in real-time,
any updates to the database entries have immediate effects.

Figure 2. A screenshot of what the update page typically looks like.
Featuring a paginated table of ranked programs and websites.

Figure 3. A screenshot of what the day page typically looks like. Featuring
highlighted hours of the day, informative charts indicating how the hour
was spent, and what programs and websites were detected.

The day view acts as the splash page and automatically
redirects to the current date and time. This is because the
most relevant data when a person is wondering how they are
spending their time is also the most recent. Following this
notion, the rest of the site is designed where the more distant
data require more site navigation. For example, to view the
current hour’s productivity, navigating to the splash page
will present you with the relevant graphs. To view a different
hour requires either changing the hour represented in the
URL or selecting the hour in the colored row at the top of the
page. For a different day, change the date in the URL or use
the date-picker in the search bar. Similar levels of abstraction
can be found in the week and month views. The day page,
as illustrated in Figure 3, showcases the days overall hourly
activity levels using a colored row, representing each hour
of the day, starting from 0 (midnight) to 23 (11 pm), with
the possibility of being colored: yellow for away from the
computer, red for distracted, blue for low activity and not
distracted, and green for high activity and not distracted. The
reasoning for the latter to be described as high activity and
not distracted (instead of productive) is because only you
can determine whether or not you were productive or not.



Figure 4. A screenshot of what the day week page typically looks like.
Featuring highlighted days of the week, informative bar charts indicating
how the week was spent, and the top five programs and websites that were
detected.

The reasoning behind both high activity and productivity
sharing the color green is due to the fact that if you are not
distracted and there is high activity, then you are probably
productive but not guaranteed. This bar also doubles as
quick navigation to different hours of the selected day. For
helping the user determine whether or not they were pro-
ductive, a table breakdown of logged websites and programs
for that time are presented with the number of minutes
actively using them and highlighted easily identifying their
respective ranks. Doughnut and pie charts are present in
the day page, representing the number of minutes attributed
to each activity level (Activity Distribution), the number of
collective minutes of each productivity level based on active
programs (Productivity Gauge), and a website to program
ratio.

The week page, as shown in Figure 4, also contains
a colored bar at the top of the page; however, instead of
showing an hourly break down, there is a daily break down
which can also act as navigation to the appropriate day for a
further in-depth breakdown. This page consists of a stacked
bar chart, which is grouped into two bars per day. One
bar represents the collective number of hours spent with
high/low/away activity, the other showcase a ratio of time
spent productive/distracted/neutral. The bars are in units of
hours and always add up to the same amount. Due to the
productivity levels being represented as sums of minutes of
all programs executed, there is easily more ”time” recorded
than there are hours in a day. To sync up the grouped bars,
a ratio is calculated for the productivity levels using the
following:

relative hours prod =
hours prod

total prod
∗ total act

Figure 5. A screenshot of what the month page typically looks like. Featur-
ing a line graph representing the number of relative hours spent productive
or distracted, indicated by a positive or negative value respectively.

Where total prod is the days total sum of every pro-
gram and websites’ frequency over the course of the
day, total act is the days total amount of logged hours,
hours prod is the total sum of just the days productive web-
sites and programs’ frequency, and relative hours prod is
the resulting ratio. Calculating the ratio for neutral and dis-
tracting hours is simply calculated by replacing hours prod
with the respective value. The week page also contains two
pie charts for the top five programs and websites of the week
based on minutes accumulated.

Lastly, the month page, as shown in Figure 5, contains
a line graph showcasing the user’s productivity over the
past thirty days or over a specified month. Productivity is
indicated via plotting the resulting hours after taking the
difference between total hours spent productive minus the
total hours spent distracted; therefore it is possible to attain
”negative” hours. This is meant to clearly indicate when a
person has been distracted for some amount of time and
not to show that a user is a time traveler. This page only
contains this line graph as processing every minute over the
past minute is intensive. To attain more details on the data
presented, simply single in one a time frame. In other words,
move from a month’s view to a particular week or day.

When developing the front-end JavaScript and CSS
frameworks such as Bootstrap, AngularJS, ChartJS, and
DataTables were used to develop a responsive design with a
modern look-and-feel. Bootstrap is utilized to allow for easy
re-sizing of the web pages without losing content. AngularJS
is used for client-side functionality in the toolbar; namely
for redirection dynamically when choosing a new time-
frame to jump to. ChartJS is used extensively throughout
the dynamic web pages, creating all the graphs present
(doughnut and pie charts, stacked bar graphs, and a line
graph). DataTables is used to generate a paginated table
consisting of all the ranked programs and websites found
in the database; allowing for quick searches and updates to
the database.



4. Testing

During the development, testing was performed in the
form of unit and regression tests. In respect to the back-
end, as the submodules (activity, firefox, and log) were being
written, before they included in the main driver, main ,
they were each independently run to verify that they perform
properly and return the expected results. For example, the
firefox submodule is expected to properly return a list of
URLs that have been accessed in the past minute. To verify
the output is correct I checked what tabs I had recently
accessed through Firefox’s history menu option. For the
activity submodule, when executed it would print the current
activity of the computer after a time delay of ten seconds
in a loop until manually deactivated; this allows me enough
time to open or lock the computer screen, or actively use the
input devices (keyboard and mouse) and verify the generated
output. The log submodule acts as a wrapper for SQL
commands to the SQLite database. For testing purposes,
a dummy database was created and the commands were
tested with dummy data. The inputs to the SQL commands
are cleaned before execution. Once the submodules were
complete and introduced into the main driver regression
testing was used to ensure previous functionality was not
lost. For example, Monty was tested to make sure it could
still catch signals and abort properly, as well as running a
diverse set of applications and websites over the course of
several minutes to see if they were still being detected and
logged at the appropriate times. After the completion of the
back-end portion of the productivity tracker, it is tested by
continuously running in the background while it is being
watched for errors, such as aborting due to an uncaught
exception or an unaccounted for bug.

While the front-end was being developed, each button
was repeatedly tested to ensure the output was consistently
and correctly appearing. To ensure the data represented in
the front-end was correct, the database was checked for
the number of minutes for the time-frame in question and
compared to the number of minutes that was reported on
the webpage. Knowing that the two ends of the project were
matching up meant that the data calculated was also correct.
This is due to the fact that the graphs are produced from
the number of times application names, website URLs and
activity/productivity levels appear in the database for a given
time-frame; since data is logged by the minute no value
should be greater than the number of minutes logged for
that time.

5. Usage

After installing Monty, as according to the README
found in the software repository, the program should auto-
matically begin running. Below describes different ways to
use Monty. Once Monty is up and running, you can view
the collected data via going to the following address in a
web browser:

http://localhost:5000

This by default will navigate you to the present day and
hour.

5.1. Using Upstart

Upstart is installed in Ubuntu 16 (and earlier) as a
service manager. Monty will be installed as a user-level
Upstart service. Meaning that it will automatically start and
stop when the user logs in and logs off or powers off the
machine. To tell if Monty is currently active, simply run:

status monty/start

This will indicate whether or not Monty is running and
show its associated PID. To manually stop Monty:

stop monty/start

To manually start Monty:

start monty/start

To manually restart Monty:

restart monty/start

If you would like to stop the productivity tracking but
still view the contents of the database, it is possible to
run Flask independently. To run Flask without the tracker
running in the background:

stop monty/start
start monty/flask

If you wanted to run the tracker in the background and
turn off Flask (presumably to save 20MB of memory), you
can do so like so. If the tracker is already running:

stop monty/flask

Otherwise, start the tracker then disable flask

start monty/start
stop monty/flask

5.2. UI Navigation

From the menu bar, there are six possible navigation
elements:

Day
This will navigate the user to the current date
and hour.

Week
This will navigate the user to the current week.

Month
This will navigate the user to the current month.

Update
This will show the user to a data table consist-
ing of all entries in the Ranking table in the
database.

Export
This will generate a JSON object containing all
data in the database.



Date-Picker
After selecting a date and pressing search, the
user will be navigated to the selected date.
Showing them only the hourly breakdown of the
entire day. To see more details an hour must now
be selected.

From the day page, different hours can be selected for an
in-depth view by pressing the white hours (0-23 inclusive).
All graphs in the day, week, and month pages have toggle-
able data sets.

From the week’s page, specific days can be selected for
more detail. This redirects the user to the appropriate day’s
page.

5.3. URL Based Navigation

By utilizing URL parameters you can directly skip using
the navigation bar to traverse the web UI by appending
parameters to the base URL.

For viewing a specific day, simply append a date in the
format of YYYY-MM-DD. For example:

/day/2018-12-25

For a particular hour, append the hour in military format
(0-23):

/day/2018-12-25/13

A shortcut to the current date and hour (instead of typing
out the date and time):

/day

To directly view the current week:

/week

To view a specific week of the current year you will
need to append the corresponding week number. The first
week of the year is denoted 1 and the last week is 52.

/week/10

For other years:

/week/2018/52
/week/2019/10

Similarly to week’s URL parameters are the month page.
To navigate to the current month:

/month

For a specific month, use 1 for January and 12 for December.
If a year is not specified, the current year is assumed.

/month/3
/month/2018/12
/month/2019/3

To navigate to the data table:

/update

Lastly, to export the entire contents of the database as a
JSON object:

Figure 6. System monitor showcasing the CPU and memory usage of Monty
when idling.

Figure 7. System monitor showcasing the CPU and memory usage of Monty
when under heavy load. CPU power has temporarily increased to 12% and
memory by about 20MiB.

/export

For a smaller JSON object only containing the rank data
for entries that have names containing a subset of the input
used as a parameter, do the following:

/month/vim

This return an object with entries containing ”vim”, ”vim8”,
”www.vim.org”, etc.

6. Performance Analysis

When Monty first starts up there is a delay between
having started and initially logging data; however, the delay
is due to top waiting one minute to produce output and
this is intended functionality. Having the output generated
from top processed in parallel allows for virtually no delay
between calling top and the next iteration of calling top. The
only slowdowns noticeable is when signaling Monty to quit
with a SIGINT or SIGTERM as the time it takes nearly one
second after having been running for over a minute, instead
of a fraction of a second when aborting immediately after
having started the program. This is due to the loop in the
subprocess, tasked with processing the output, containing
code to finish any leftover jobs in the queue when a signal
is detected. This allows for a graceful exit without a loss of
data (unless SIGKILL is sent).

When navigating to the day webpage of the front-end,
all data is loaded in a fraction of a second. For the week
webpage, anywhere from six seconds to less than one is



necessary to generate the charts for display. This is due
to having to iterate over potentially 10,080 logged minutes
in a week and analyze the data contained in each minute.
Similarly, the month webpage has a similar issue due to
the large amounts of data to cover. When viewing the data
over a month, load times can take anywhere from less
than a second to approximately sixteen seconds depending
on just how much data was logged for that month. The
more data that is stored for a particular time-frame, the
longer it will take to load. To improve load times would
require preprocessing data after a unit of time has passed
(e.g. a month) which would require more storage space
on disk. It would also require updating the preprocessed
files every single time an entry in the database is updated.
This may cause significantly more time processing a time-
frame instead of calculating the data as needed. Viewing
the dynamic table, under the update page, takes less than
a second to load, and data dumping the contents of the
database as a JSON object requires approximately three
seconds.

The back-end application that logs user data never
reaches 1% CPU usage and consistently requires 25MB
of memory. When idling the Flask server uses less than
1% CPU usage and approximately 20MB of ram; when
under heavy loads, such as viewing week and month pages,
CPU usage peaks at 12% and memory usage increases to
approximately 40MB. This is shown in Figures 6 and 7.

7. Threats to Validity

The main threats to validity are the means of which
I present the analyzed data in the web UI. The reasoning
behind selecting the charts contained in Figures 3-5 is to best
showcase the different types of data that is being logged
without overwhelming the viewer. Overwhelming, in this
case, means to avoid over cluttering the web page with too
many graphics. Through trial and error, it seemed that four
charts are too many; however, this is ultimately arbitrary.
Using that limit, I thought of what potential patterns could
be found when graphing over several days, and what metrics
would be insightful for a user wondering how their day was
spent. Again the decisions behind choosing how and what
to chart was more or less of what I found useful. The level
of importance of the presented metrics may differ between
users. To account for this, the export page generates a JSON
file that can be used to find other patterns may be more
insightful. Also, users could make SQL calls directly to the
underlying SQLite database. Another current issue of the
software is that it is tailored to Ubuntu 16 and Firefox. To
handle the use of other browsers would require further de-
velopment in how such browsers store their session data. For
enabling Monty to easily install to other Linux distributions
would require to replace/supplement the current support for
Upstart, which has been deprecated, with SystemD. Both
issues are currently a top priority in future work as the
software is stable in Ubuntu 16.

8. Conclusion

This paper has discussed the pros and cons of several
currently existing productivity trackers on the market and
aims to show that a useful productivity tool can be devel-
oped without the downsides of existing ones. Most popular
productivity trackers come at a price of being non-free
proprietary software with the uncertainty of how your data
is being used remotely, such as Saent, TimeTracker, and
RescueTime. This project shows that productivity trackers
do not have to send your personal data remotely to offer a
service that is fast, simple to use, and not resource intensive.
By limiting logged data to time-stamps, names of user run
programs, the base URLs of websites visited, whether or
not input was detected and if the lock screen was activated,
informative graphs can be produced to help deduce where
users are becoming distracted. The small amount of data
being tracked allows for a small SQLite database and quick
lookups. Saving all of the data locally ensures that the
collected data stays on your machine. This also allows the
user to perform their own experiments on their own data.
With a minimal web user interface, you can interact with
the collected data or simply view time-frames in question
for an in-depth analysis.

Currently, Monty requires 15MB of available hard drive
space for the source code with additional room for the
database. With over 270 ranked applications and websites
and 22,671 logged minutes, over the span of approximately
four months, only produces a 9MB database. Ultimately
Monty serves as an alternative to existing productivity track-
ers as it is convenient to use, non-invasive and lightweight.

9. Future Work

Future modifications to this project would first and
foremost to support SystemD in place of Upstart, for en-
abling Monty as a service. This is due to most Linux
distributions are now supporting SystemD and Upstart is
no longer shipped with Ubuntu after version 16. Enabling
multi-selections in the dynamic data table for fast database
updates via the web UI is another future feature. Currently,
only one row can be modified at a time. Automatically
refreshing the day webpage to show the most up-to-date data
is also a future work. As of now, if you would like to view
new data of the current date and hour the user would need to
periodically refresh the page. Lastly, another feature I look
forward to implementing in the future is the ability to use
Monty on different work stations and being able to combine
exported databases into one merged database, showcasing
the work patterns on different machines environments.



References

[1] (2019) Saent homepage. [Online]. Available: https://www.saent.com/

[2] F. Cirllo, ”The pomodoro technique (the pomodoro)”, Agile Processes
in Software Engineering and. Harlow, England: Addison-Wesley,
2006, vol 54.

[3] (2017) The TimeTracker homepage. [Online]. Available:
https://www.openhour.com/timetracker/

[4] (2016) The Fluxday homepage. [Online]. Available: https://fluxday.io/

[5] (2017) The RescueTime homepage. [Online]. Available:
https://www.rescuetime.com/

[6] (2009) The Zeitgeist Project. [Online]. Available:
https://launchpad.net/zeitgeist-project/

[7] (2011) Activity Log Manager. [Online]. Available:
https://launchpad.net/activity-log-manager/

[8] (2019) lz4json software. [Online]. Available:
https://github.com/andikleen/lz4json/


